

Cutting Tool Solutions For New Automotive Materials

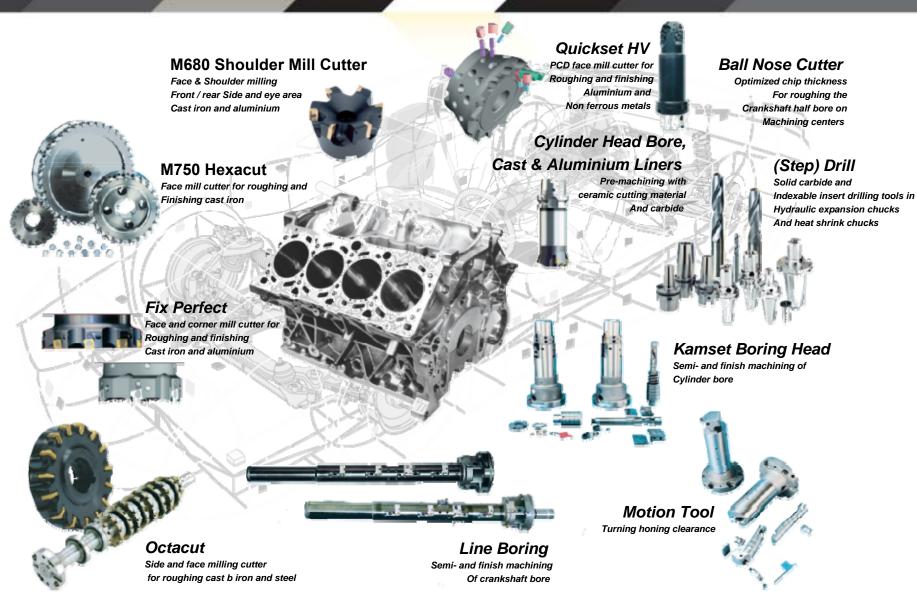
Muneer Uddin Global Automotive Portfolio Manager

3rd International Seminar on Modern Cutting & Measuring Engineering Shenzhen, China November 7, 2008

Kennametal Partners

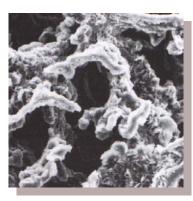
DENSO

CATERPILLAR®



CGI Block Portfolio

COMPACT GRAPHITE IRON


Machining Comparison GG:CGI

- ➤ CGI has roughly 50% higher tensile strength and elongation compared to gray cast iron.
- Efficient machining of CGI requires specific optimized cutting parameters, different from those used in gray cast iron machining

Gray Cast Iron

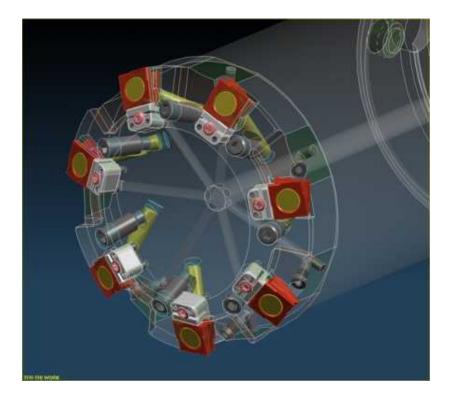
Compacted Graphite Iron

Property	Gray Iron	CGI	
	GG 35B	GGV	
Hardness (Brinell)	160-235	180-250	
	HB	HB	
Tensile Strength (MPa)	220-350	300-500	
Elastic Modulus (GPa)	105	145	
Fatigue Strength (MPa)	110	210	

Process Equipment Selection for CGI KENNAMETAL

- Typical power requirements for CGI are ~30% higher than GCI
- High spindle power necessary especially for roughing operations (up to 50 kW spindles)
- > Compared to GCI, cutting speeds are lower and resultant forces are higher for comparable chip load, requiring high spindle torque at low to moderate speeds.
- Tool life is generally 30 % less than GCI

Cylinder Boring – Proven Solution Kennametal



Challenge

Decrease the number of spindles to rough cylinder bore CGI block by 50% Material not capable of being machined using ceramics or CBN (proven in KMT R&D Lab)

Solution

- Increase number of inserts from 4 to 7 using Fix Perfect design
- Increase velocity to 160 MPM, 2.1 mm/rev
- Obtain tool life of 600 bores
- Use matrix grade SP87EM carbide developed for machining CGI
- Effectively cut time by more than half to allow for decrease in number of spindles

CGI Block: Roughing Cylinder Bore

The Task:

• Component: passenger car cylinderblock 4 cyl

• Material: **CGI 450**

• Operation: roughing d.o.c. approx 3 mm radially

Coolant: internal

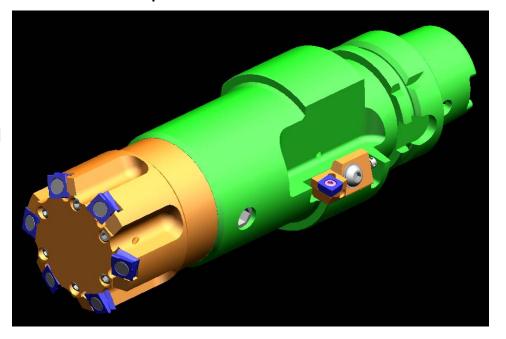
Transfer Machine - 2 spindles Machine:

The Solution

- boring head with modified Fix Perfect inserts (8 edges); use R0,5 instead of standard edge. SP87EM carbide
- vibration damped adaptor with heavy metal
- one tool R.H. one tool L.H.

The Result

- 600 workpieces
- cutting length 164 mm per cylinder = 100 m toollife (or 150min)


The Data:

 $v_c = 160 \text{ m/min}$

D = 78,5 mm; z = 6

 $f_z = 0.2 \text{ mm/insert}$

 $v_f = 631 \text{ mm/min}$

Cylinder Bore - Finishing on Machining Centers

Cast Iron

Romicron HSC Fine Boring Tool

The Task:

• Component: passenger car cylinderblock

• Material: CGI 450

• Operation: fin. cylinderbore

• Coolant: Yes

• Machine: Heller MC

• Roundness: 6-8 µm

• Surface Quality: Ra 3.75 μm

• Roundness better 5 µm

The Solution:

 Romicron Boring bar z=3, all 3 inserts adjustable at one time with scale ring

The Result:

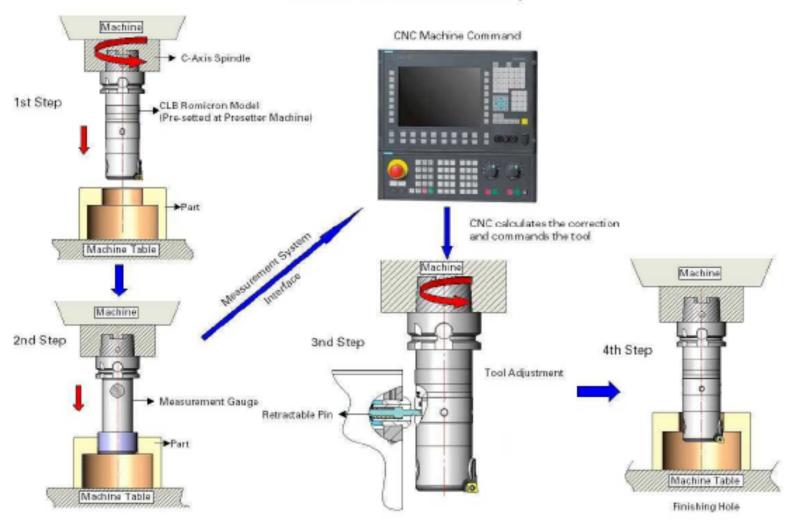
- Ra 1,31 μm / Rz 7,14 μm
- Roundness between 3,7 and 4,9 µm

The Data:

 v_c = 130 m/min

D = 80 mm

 $f_z = 0..25 \text{ mm/tooth}; z = 3$


f = 300 mm/min

CLB - Process Solution with Romicron

Romicron CLB - Process Summary

Milling CGI

Roughing Engine Block - Head Face

The Task:

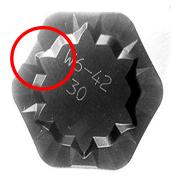
• Component: Pass. car V6/V8

Material: GJV450 (Ti< 0,015%) 240 HB

• Operation: rough milling head face

• Coolant:

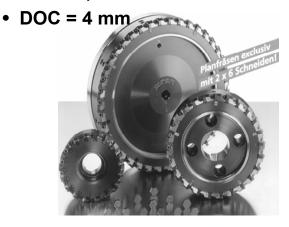
• Machine: **Transfer Line**

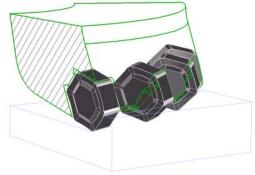

• $Rz = 20 \mu m$

The Solution:

- milling cutter M750 (12 usable cutting edges / insert)
- HNGX 090520-MCI in TN-6510
- strengthend geometry in area of cast skin
- thin coating PVD
- Limitations/ specifics: rigid setup

The Results:

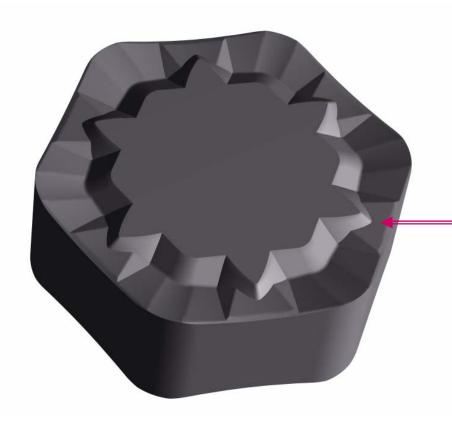

• T = 900 blocks (1.800 faces) (breakouts)



HNGX 0905230-MCI

The Data:

- D = 315 mm, zeff = 46
- vc = 100 m/min
- FPT = 0,25 mm

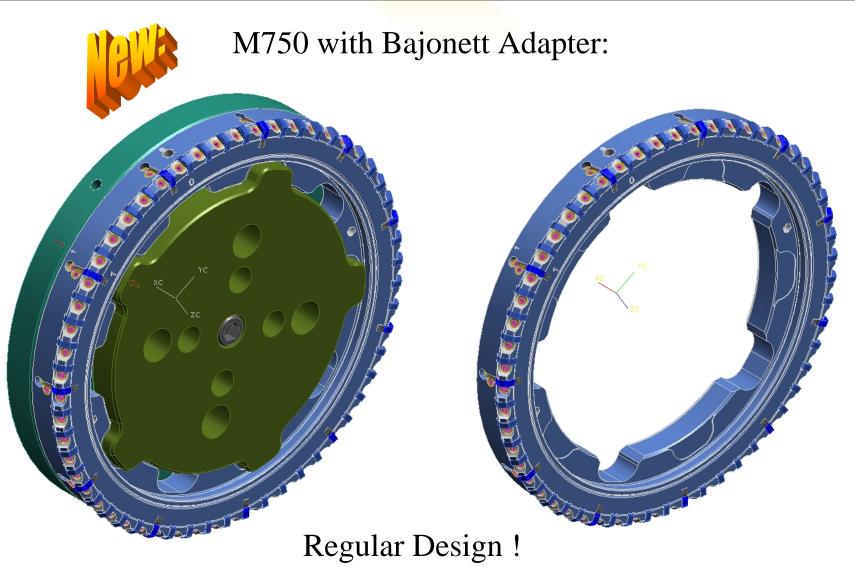


CGI - Milling

M 750 - MCI Geometry

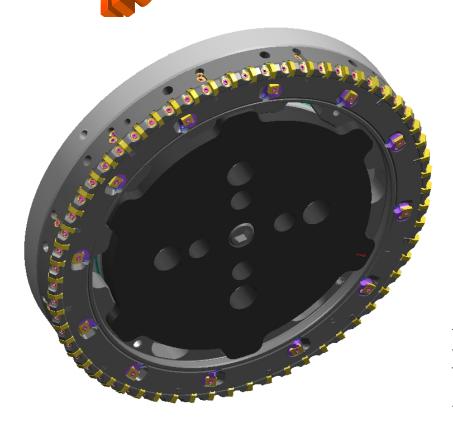
Geometry for roughing preferably at $\kappa_r = 45^{\circ}$ with $a_p = 3 - 4 \text{ mm}$

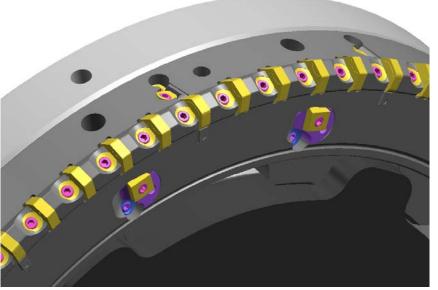
Main features:


- Groove filled up in mid of edge
- Larger K-land in mid of edge
- 10 µm stronger honing

Benefit: No notch wear

CGI - Milling Applications:




CGI - Milling Applications:

M750 with Bajonett Adapter:

M641 Design with lateral mounted Wiper Inserts for higher Surface Requirements!

Proven Solutions

Engine Block Machining

Face Mill M641 with Carbide Inserts

2 Carbide or PCD 21 003420 001 axially +0,03 vs. "2" 233 38 458 36 THM-F axially +0,03 vs. 233 38 457 36 THM-F

Features:

Bi-Metal

- Fine-grained carbide K01
- Thin PVD coating
- Polished chip faces
- Radially and axially positive geometry
- Flexibility pre- vs. final finish inserts
- Finishing inserts axially adjustable
- Minimum setting time
- PCD finisher is possible

Data:

- D = 400 mm, zeff = 60 (48x1+12x2+2x3)
- vc = 250 m/min, FPT = 0,11 mm,
 DOC = 0,5 mm
- Wt = $10\mu m$, Rz = 2,99, Ra = 0,43
- T = 1.000 I4 blocks AlSi6 + GG26 (Spec)

Engine Block: Deck Face Grinding

Bi-Metal

The Task:

• Component: Pass. Car I4I5 engine block

• Material: Aluminum 356 Loss Foam Cast

with GG26 liners

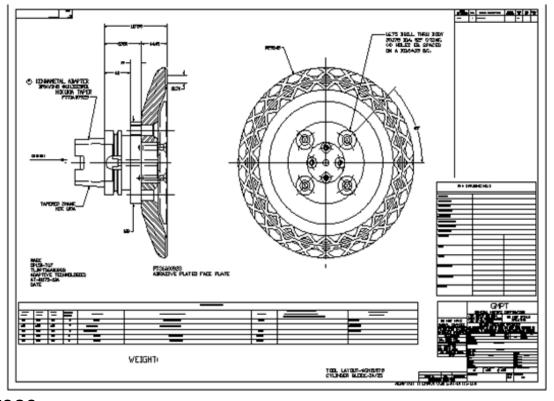
• Operation: Deck Face Finishing

Coolant: Yes

Machine: HSK100A CNC HMC

The Solution:

- CBN Plated Face Grinding Wheel
- Bi-Metal cut of AL+Cl
- Can be replated
- Requires Semi-finish milling cutter
- See 1067544
- Use instead of PCD Milling cutter


The Results:

- Rz = 5.0
- T = 1000 blocks Grinding Disc 1047989

The Data:

D = 298 mm vc = 1500 m/min F = 1600 mm/p/m DOC = 0.05 mm

GDW 1047989; GM I4I5; NTC; Jerry Greenman © 2008 Kennametal Inc. ∣ All rights reserved. ∣ 17

Cylinder Head Portfolio

PCD face mill cutter for Roughing and finishing Aluminium and Non ferrous metals

Kendex Precision Lock

Boring & Sinking, adjustable

PCD Monobloc

Boring & Sinking

TX Drill

TXD Drill PCD

TF Drill

Fix Perfect

Face and corner mill cutter for Roughing and finishing Cast iron and aluminium

Valve seat pre- and Finish machining

Special boring bar

Pre-drilling of valve ring seat and Inlet/exhaust valve clearance cut (Carbide or PCD inserts)

Valve Seat

Generating Tool

Finish machining of valve seat (CBN inserts)

Line Boring Bar

Finish machining of valve seat (CBN inserts)

& Fine Boring Tool

PCD face mill cutter for Roughing and finishing Aluminium and Non ferrous metals

Step Sinking

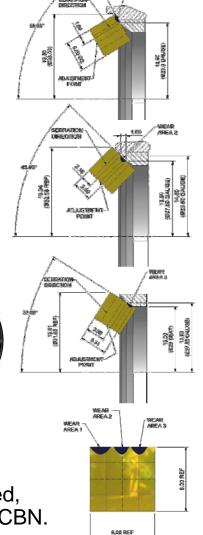
Camshaft bore Complete machining Of all journal bearings

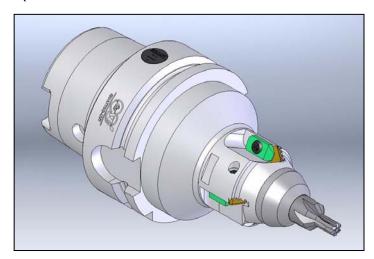
Valve Seat Machining

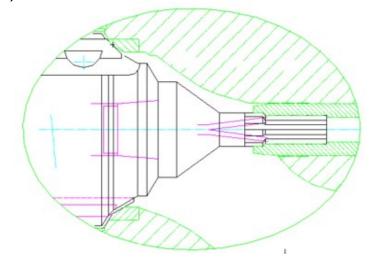
- No setting of valve seat angles; determined by serrations in body.
- Minimum length setting to achieve correct intersections.
- Positive clamping system gives insert stability.
- Clamp design prevents damage to cutting edges.
- 4 edges per seat insert reduces costs.
- Cost per part of 0.70 cents with expected tool life of 450 seats / edge
- Minimum or no setting of valve guide reamers depending on choice.

Two piece design reduces reconditioning costs.

Only 1 design of insert used

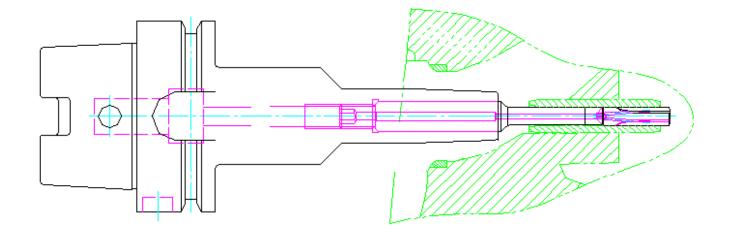





Standard (6, 9, 12mm)Insert available in Carbide, TiN Coated, TiCN Coated, TiAIN Coated, Cermet and full face PCD and CBN.

Valve Guide Machining (CNC)

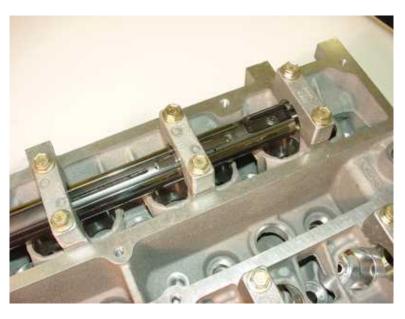
- Finish Seat & pilot guide
- Tool life of seat 4,800 intake seats or 2,400 exhaust seats
- Tool life of guide reaming 44,000 holes s'finish (1/4th depth as finish)
- Tool Cost / pc of valve seat \$0.7 CBN (Hard seats) or \$0.12 c.carbide
- Tool cost /pc of valve guide reamer \$0.002 s'finish (intake & exhaust)
- Approximate time for tool set up 15 minutes cleanup/index/preset without removing reamer (add another 5 minutes for reamer change)



Combined tool systems – Reducing tools & Eliminating Changes

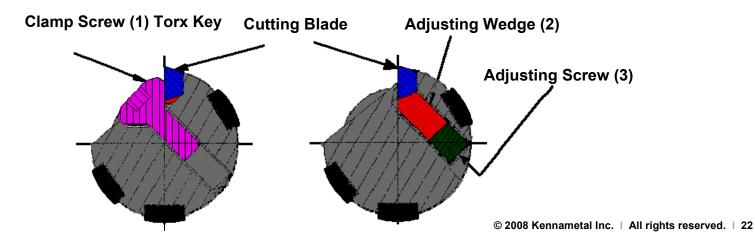
Valve Guide Machining (CNC)

- Tool life of guide reaming 11,000 holes (all holes done with (1) reamer)
- Tool cost /pc of valve guide reamer \$0.02
- Approximate time for tool set up 7 minutes cleanup/index/preset



Combined tool systems – Reducing tools & Eliminating Changes

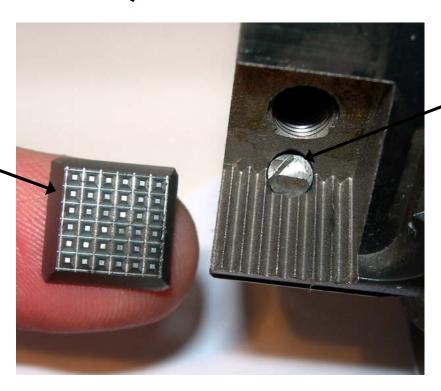
Cam Bore Tooling Benefits



Q-Cut Cam Bore Reamer

Advantages

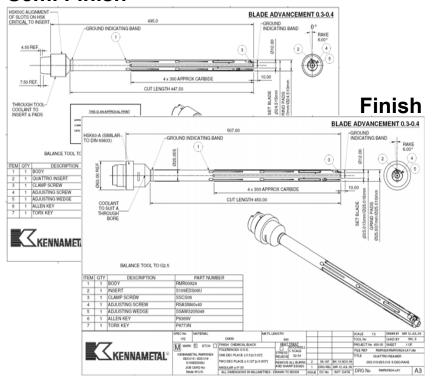
- Gluing the pads allows full length carbide pad
- Repairing tools is simpler and more cost effective.
- Tools can be re-padded an unlimited amount of times.
- Gluing pads is a stable process reducing stress in the reamer body which increases the life of the reamer body, thus reducing cost.



Proven Solutions for Engine Manufacturing Kennametal

Advanced Solutions – Fine Boring WHAT IS THE "QUATTRO-CUT" REAMER?

4-edged indexable insert locates on precision serration's


Precise size control to microns but only 1 adjusting screw is required

Simple blade adjustment "de-skills" setting of the tool

Typical Bore Finishing Cost Savings Kennametal

Semi Finish

Detail	KMT	Competitor		
New Cost :	£3,000	£5,000		
Refurb Cost :	£2,000	£3,000		
Insert cost:	£195	£130		
Insert cost / edge:	£49	£130		
Insert Matl:	PCD	PCD		
Inserts / Tool :	1	1		
Edges / insert :	4	1		
Compt / Edge :	40,000	35,000 - 40,000		
Compt / Insert :	160,000	35,000 - 40,000		
Speed r.p.m.:	3500	3500		
Speed m/min:	270	270		
Feed mm/rev :	0,1	0,1		
Feed mm/min :	350	350		

PCD Aluminium Head Estimated Cambore Savings = \$50,000 per annum

Creating value through superior tools & process focus

Crankshafts Portfolio

300 Customers

Deep Hole Drill

for depth with 20 up to 30 times D machining cast iron and steel

Turn Broaching Tool


for roughing and finishing serveral crankshaft center bearings simultaneously

highest productivity best Flexibillity

Segment Solution - Finishing

highly adjustable to fullfill best runout

highest productivity

best Flexibillity

Internal Mill Cutter

for roughing and finishing stroke bearings for roughing and finishing center bearings

for roughing and finishing stroke bearings for roughing and finishing center bearings

Turn-Turn Broaching Tool

for roughing and finishing center bearings

"Hollow-Mill"-Cutter

Roughing flange Roughing stub end

HSC Auto Speed VME 195

Fully automatic measuring external mill cutters Fully automatic measuring turn-turn broaching

Turning Tools

for roughing and finishing flange for roughing and finishing stub end

Kennametal Partners

SHENYANG

SIB PEGARD

Spectra ADE

STEYR-GAS STROJIMPORT

SUH ENGLAND

Thyssen Krupp **TIANJIN ENGINE**

STANKO

STANKO

SUYAAN **TALBOT**

TATA **TELCO**

TIANZIU

TIM YOUNG

TORPEDO

TOYOTA

TRIUMPH

TUF OP37 **UAMS**

UFA

TOFAS TUERKEI

SSANG YONG

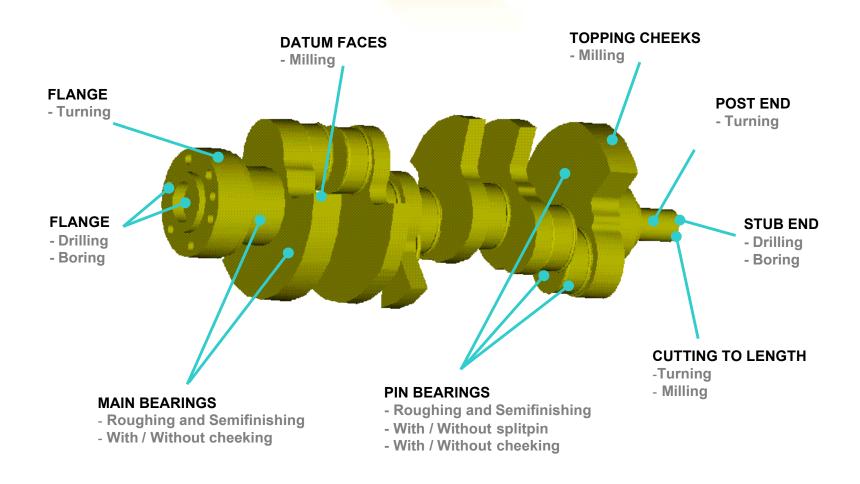
SIF

SKODA SONONA KOKI SOUTH AFRICA

SHENYANG CHINA

SKL MAGDEBURG

ADE ALBION ALFING AMTEK SICCARDI ANHUI CHINA API API KUTAISSI ASHOK LEYLAND ASIMCO ATLAS AUDI AUSTIN ROVER AVTOPROMIMPORT AZLK BHARAT FORGE BLMC BLMC BATHGATE BMW BOC BOEH. BITZER BOSCH BRADFORD ENGLAND BRIGGS & STRATTO BRILLIANCE BUICK BURGSMUELLER	EL NASR AEGYPTEN ELEKTRO THERMIT ENERGY ENGINE DIVISION	FASA-RENAULT FAW ChangChun FERRARI ITA FEUER FIAT FORD FORST SOLINGEN GARDNER GARDNER GARDNER GENOS GEORG KREUZTAL GERLACH USA GFM GIDDINS &LEWIS GKN SHARDLOW GM GRUENER H.E.S. S.AFRIKA HAIMA HANKOOK Harbin Dongan HEG 72.8213 HHW SAARBRUECKEN Hindustan Motors HMT HYDERABAD HOECKLE	KH Mbau KHD KIA	Koganei Seiki KOPP KROMI EFFEM KRUPP KUBOTA LAND-ROVER LEOPARD LEOPARD CHINA LESKI LML LOMBARDINI CHD LUNDEN LINDHE LYCOMING USA Macimex Mack Truck MAFA RAVENSBURG Mahindra & Mahindra MAN MANNESMANN DEMAC MARUTI MASERATI ITA MAVILOR MERCEDES-MANNH. MERCURY METALLEXPORT METALURGICA	Perkins PETTERS PEUGEOT PITTATORE POLDI KLADNO POLSKI-FIAT PONTIAC GM	ROTAX ROVER RTHW ACHEN RUSSKI DIES. RUS RUSSKI DIESEL RVI ESP RVI SPANIEN SAAB SAARBERG SAFOP ITA SAME SANE IRAN SANZ SPA SARATOV SAW CHINA SCANIA SCANIA BRASILIEN SCHIESS KOPP SCHLEICHER SCHOENEBECK
BRILLIANCE BUICK	ELEKTRO THERMIT ENERGY	Hindustan Motors HMT HYDERABAD	KH Mbau KHD	MERCURY METALLEXPORT	POLDI KLADNO POLSKI-FIAT	SCHIESS KOPP SCHLEICHER
BUTZBACHER WEICH BW (EMO) Krupp Campo Limpo CATERPILLAR		HOECKLE HOERMANN HOESCH HOHENLIM. HONDA HORO WITTEN	KIA KIHN LUXENBURG 3 KIRLOSKAR KMCL KMT Korea	METALURGICA METOPOLIT,MOSKAU MHI MITSUBISHI MITSUBISHI KYOTO	PRO-CON PSA PTS SINDELFINGEN PZL WOLA	SCHOENEBECK SCHRECK MIEVES SHANDONG SHANXI SHARDLOW


300 Customers & 9000 proven Solutions

Crankshaft

Operations

Proven Solutions for Engine Manufacturing KENNAMETAL

Crankshaft Machining

Main Bearing Machining

Turn-Turnbroaching

Tool dia. ϕ : 700 ... 750 mm

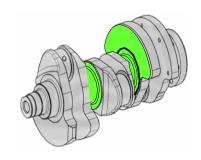
Roughing:

- cutting speed: 140 ... 200 m/min - feed rate: 0,25 ... 0,5 mm⁻¹

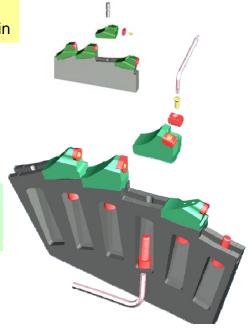
Finishing:

- surface quality: R₂ 4 ... 6 μm 160 ... 220 m/min - cutting speed: 1800 ... 2400 mm/min feed rate:

Axial guidance key / keyway


- ridgid and robust design
- high repeat accuracy
- small amount of spare parts

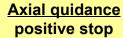
Radial mounting socket cap screw

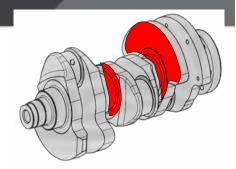

- easy to clean
- fast way to change cartridges
- standard screw

Tangential mounting form fitted

- reliable force transmission

Turn-Turnbroach cartridge mounting

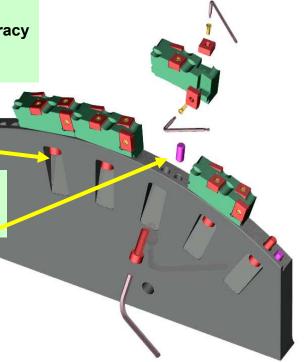

Proven Solutions for Engine Manufacturing KENNAMETAL


Crankshaft Machining

External Milling

 $D = 700 \dots 750$ 30 - 50 cartridges

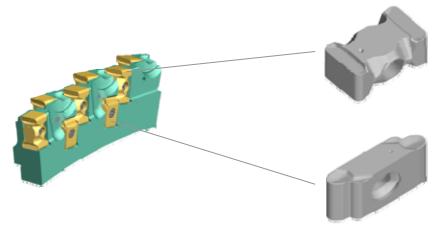
External Milling cartridge mounting

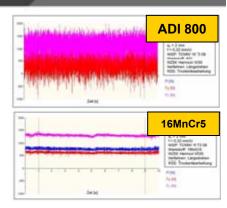

- ground surface
- high DO and Face run out accuracy
- highest repeatability
- small amount of spare parts

Radial mounting socket cap screw

- easy to clean
- fast way to change cartridges
- standard screw

Tangential mounting Pin


- reliable force transmission



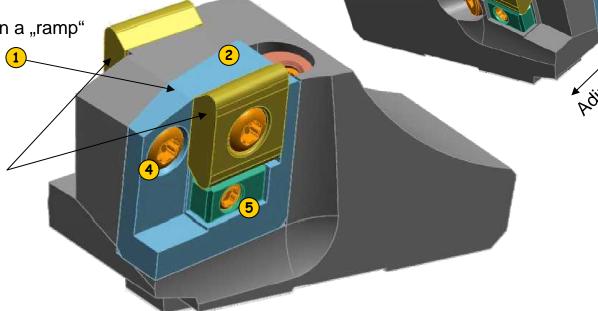
Crankshaft ADI Machining

Difficulty in machining ADI is due to high frequency large amplitude vibrations compared to nodular cast Iron and alloyed steels

- Newly developed PVD coated Kennametal carbide grades closes the productivity gap for ADI milling & turning in comparison to Nodular Cast Iron
- For crankshaft insert machining Kennametal has developed new geometries and inserts to provide comparable maching performance to Nodular Cast Iron
- With the availability of new coated carbide grades with increased performance for ADI machining the share of ADI crankshafts will increase

Comparable lifetime for ADI & Nodular Cast iron tools achieved

Crankshaft Process Adjustment

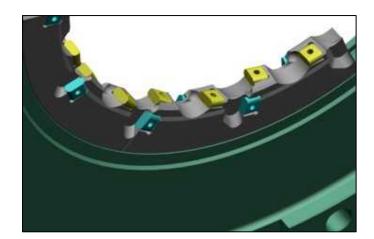

- Optimizing process adjustment
- Ability to change width of cut and compensate for wear

Movement of the wedge (1) causes a radial movement of the cartridge (2).

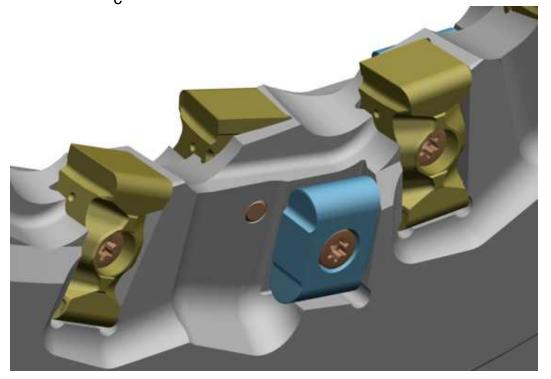
Clamping of the cartridge with screw (3) and (4)

Carbide shim (5)

Movement of the insert on a "ramp"


Process Compensation for Width and Wear

Crankshaft Insert Optimization

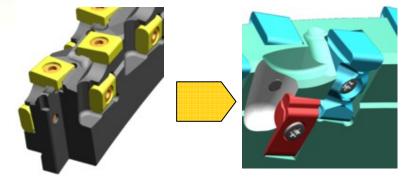

V_c:120 - 160 m/min

Current Process

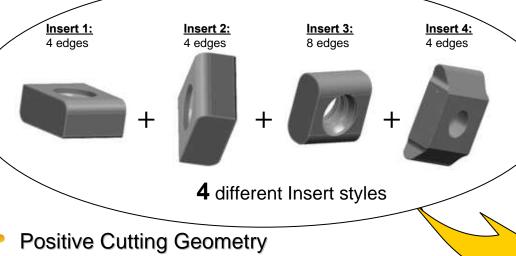
Positive Cutting Geometry

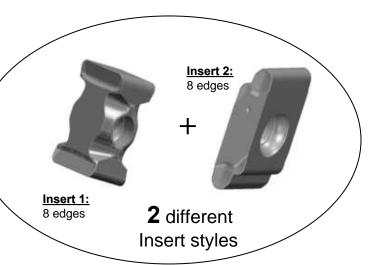
 $v_{c} = 240 \text{ m/min}$

New Technology


In Production in NA utilizing Heller machine

Crankshaft Disc Optimization


69%

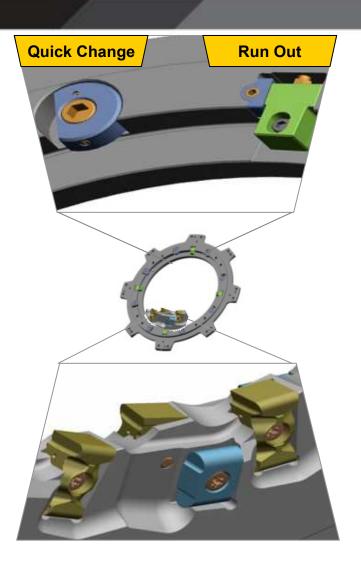

- Process optimization for internal and external milling
- Improved Cost through utilizing press technology
- Adjustability width of cut and run out quality
- Reduced setup times

100%

CPP:

CPP:

• $V_c = 240 \text{ m/min (From 120/160m/min)}$

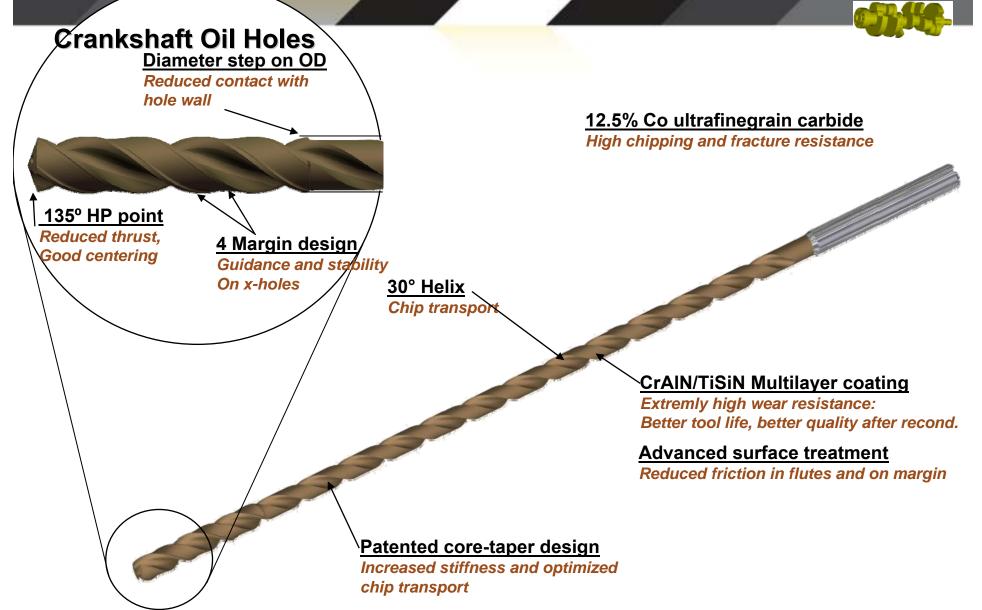

Consolidating Inserts and Improving Process Robustness

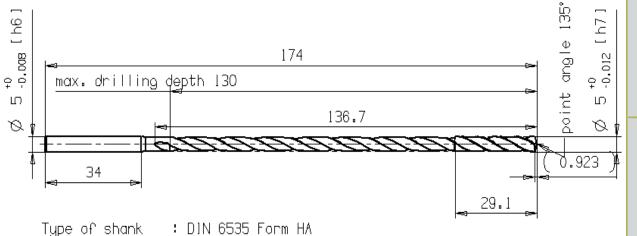
Crankshaft Internal Quick Tool

- Fast tool change developed to minimize downtime
- Improved run out adjustment allows segment construction
- Systems allows highest flexibility
- No crane needed
- Reduced Cost (Center disc one time purchase)
- Positive cutting geometry improves cutting speed from

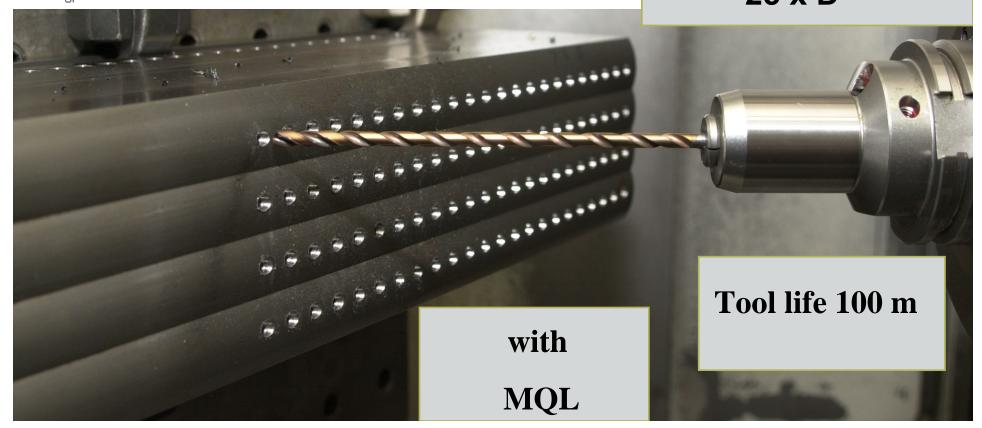

1.1min per segment = 6.8min for total disc change

Crankshaft - Oil Hole Drilling


Solid Carbide – MQL Deep Hole Drilling


MQL Deep Hole Drilling

MQL Deep Hole Drilling



Vc = 80 m/min

F = 0.3 mm/rev

Drilling Depth 25 x D

Questions?

