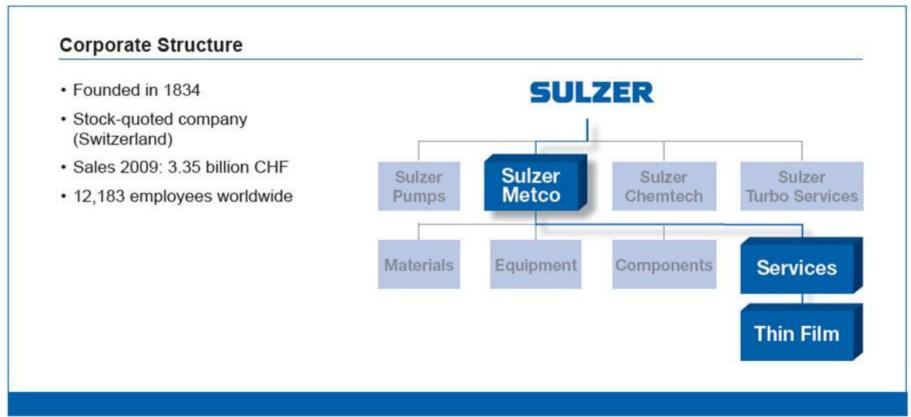


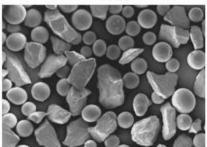
A novel approach to micro alloying and structure design of high performance coatings

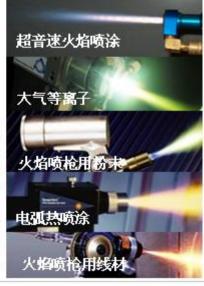
Sulzer Metco

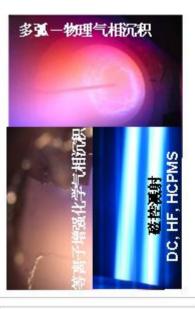
高性能涂层的微合金化和结构设计

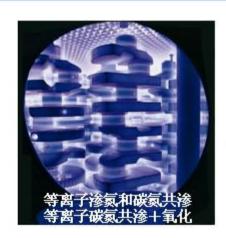

G.Erkens, J.Vetter, J.Müller | December 10-12, 2010, Beijing

Sulzer Metco


A STATE OF THE STA	Company	Technologies	Applications	Solutions
	Corporate Structure History Locations Industries	Overview Plasma Heat Treatment PVD Coating Combi Treatment DLC Coating	Plastics Machining Forming Semiconductor Racing Automotive Engineering Thin Film Equipment	Coating Services Thin Film Equipment Shop-in-Shop Expertise




PTA*-焊接材料


如:40% NiCrBSi和 60%的碳化钨

*等离子弧焊层

在基体表面增加 等离子弧焊层 (1'000 – 15'000 μm) 在基体表面增加 热喷涂层 (50 – 11'000 µm) 在基体表面增加 薄膜层 (PVD, PACVD, hybrid) (0.2 – 50 µm) 热化学的工艺 IONIT IONIT OX (渗入基体 10 up to 10 µm)

Surface

Substrate

Substrate

Substrate

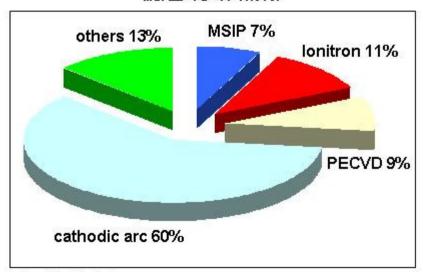
Substrate

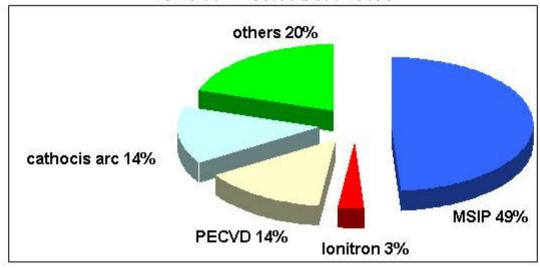
苏尔寿美科提供各种表面处理技术,为客户提供范围宽广的各种解决方案。

Sulzer Metco

- ▶ 引言
- ▶ 高离子化PVD技术
- > 一市场份额
- > 一挑战
- > 一涂层设计
- ▶ 一多米诺技术
- ▶ —APA, MAC(微合金)
- ▶ 一HIPAC(高等离子化脉冲磁控溅射技术)
- > 技术发展趋势
 - 一未来是混合技术的天下 混合技术在微合金涂层上的应用 等离子增强辅助多弧技术
 - 十高等离子化脉冲磁控溅射技术
 - 一 脉冲多弧技术的挑战

高科技的驱动者


ARC (多弧), MSIP (磁控溅射)的市场份额?

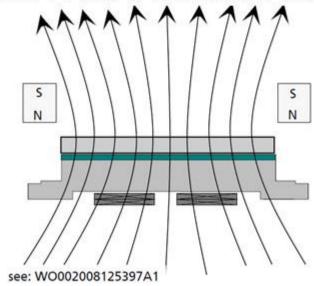

初削刀目涂足

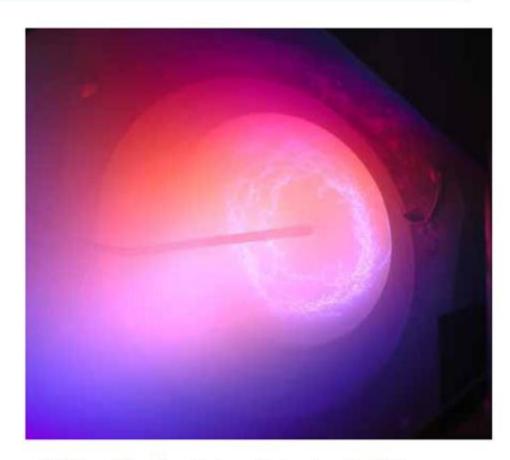
成型模具涂层

零部件, 易磨损件涂层

高性能涂层

- ■材料的低离子化率
- ■多的氩离子


- 提高的离子化率
- 高离子化程度的沉积材料 (+,++, 更高)
- 高流量的低能量离子
- 可控的涂层微观结构和相形成

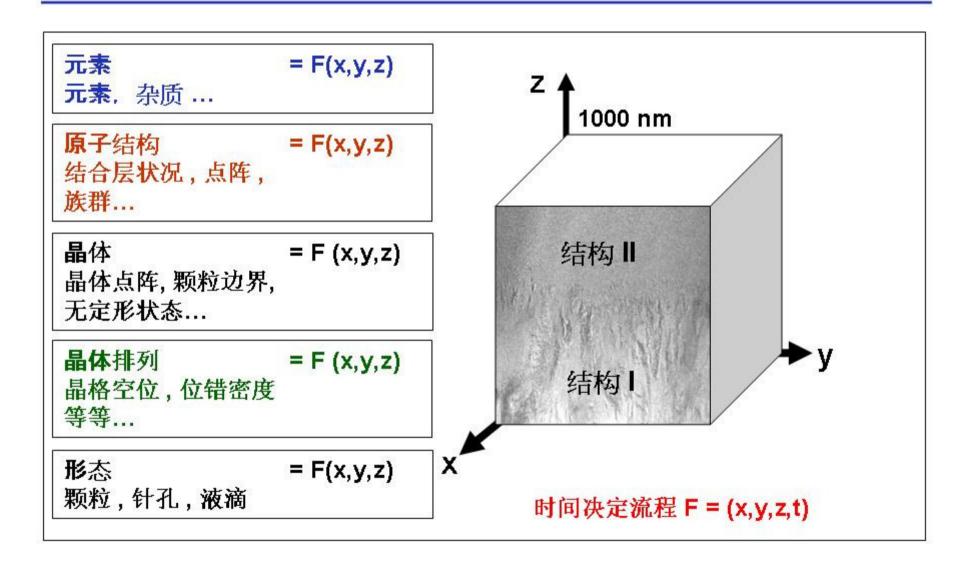

高科技的驱动者 创新的APA多弧技术

磁力区域扩大的阴极多弧技术

- > 更快的电弧运动
- > 更小的电弧尺寸
- > 微量的液滴喷射
- > 更高的蒸发率
- > 更高的靶材利用率
- > 改良的涂层结合力和性能,更光滑的表面

APA cathode (Sulzer Metaplas GmbH) APA: 等离子增强辅助技术

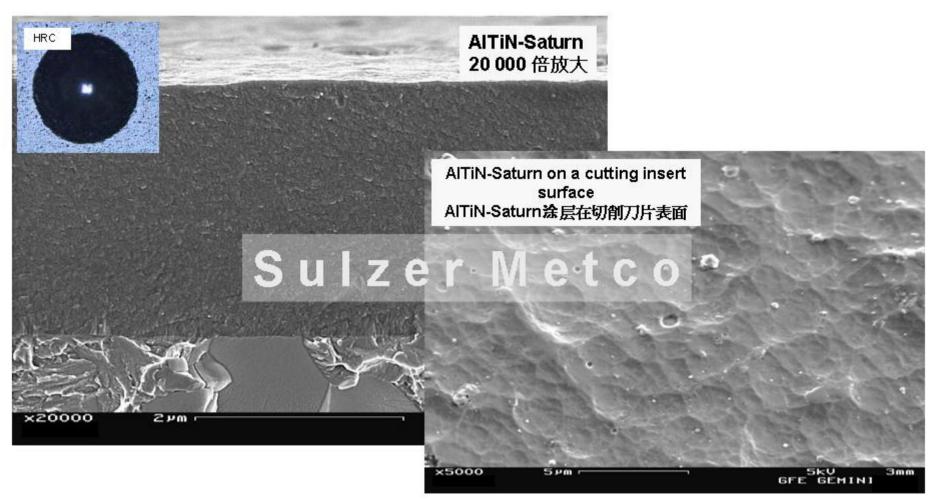
高科技的驱动者 创新的APA多弧技术



传统的多弧技术生成的 涂层沉积表面

采用APA多弧技术生成的 涂层沉积表面

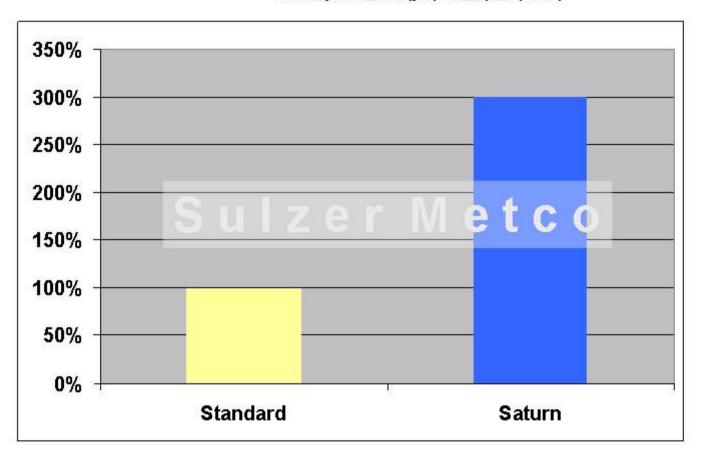
高科技的驱动者 涂层设计和优化



Driving high technology 高科技的驱动者 **AITIN Saturn**

Still one of the best all-round high performance coatings

至今仍是最佳的高性能涂层之一


Driving high technology 高科技的驱动者 Rough milling of mold steel (HRC <54)

模具钢粗铣 (HRC <54)

Pocket milling with increased material removal rate

高速大进给模具型腔铣削

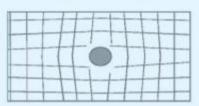
- 83

Driving high technology 高科技的驱动者 Duplex treatment for various type of HSS tools

不同类型刀具的组合处理

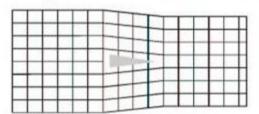
Soft nitriding of HSS steel plus PVD in one cycle 在高速钢材料上一次完成软氮化加PVD涂层的组合处理

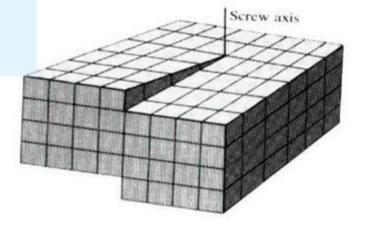
Driving high technology 高科技的驱动者 Coating optimization by "micro alloying"

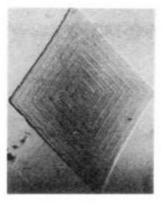

通过微合金技术优化涂层性能

Effect of dislocation

"dislocations": stacking faults that disrupt regularity of crystal


- → kinetically: adsorbing species does not have enough time to find thermodynamic equilibrium (correct position)
- → composition: adsorbing impurity atom disrupts packing


point defect, missing atom, impurity:



 screw dislocation: propagates through crystal

step dislocation, line defect:

⇒ dislocations contribute to mechanical properties (ductility, brittleness) and influence

crystallization speed (trapping sites)
All rights reserved. Information included in this presentation is proprietary information of Sulzer Metco.

Source: R. Nix, www.chem.acuk/surfaces/scc

Driving high technology 高科技的驱动者 Sulzer Metaplas' Micro Alloyed Coatings (MAC's)

苏尔寿美科的微合金涂层

The changed electron structure leads to:

电子结构的变化可带来:

- increased electrical resistivity
- improved phase stability
- reduced thermal conductivity
- increased Chemical resistance
- increased formation of oxide top layers
- improved fatigue resistance
- increased yield, compressive and shear strength 提高屈服、压缩及剪切强度
- the stochastic incorporation of a significant amount of larger elements (0.1-3at%) will influence the atomic crack propagation e.g. R_x > R_{Cr} > R_{Si} > R_B

随机组合的大尺寸元素(0.1-3at%) 将影响原子的裂纹延展表现

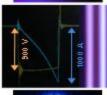
更高的电阻性能 更好的相稳定性 降低热传导性能 提高抗化学性能 提高表层氧化保护层的形成 提高抗疲劳性能

高科技驱动者 多米诺系统平台

设备模块

多米诺 S:

可用容积: D450*500mm


多米诺 L:

可用容积: D600*700mm

APA-ARC 模块

等离子增强辅助技术

HIPAC 模块

高等**离**子化的先进涂层

溅射模块

增强直流溅射,脉冲直流溅射,

磁控溅射

组合技术模块

氨化+PVD/PACVD

DLC 模块 PACVD, 磁控溅射+PACVD

Driving high technology 高科技的驱动者 MAC, 微合金涂层: M_{flex} (CrSiXN)

M_{flex} from the Sulzer Metaplas machining Series

M_{flex} 来着苏尔寿美科切削家族

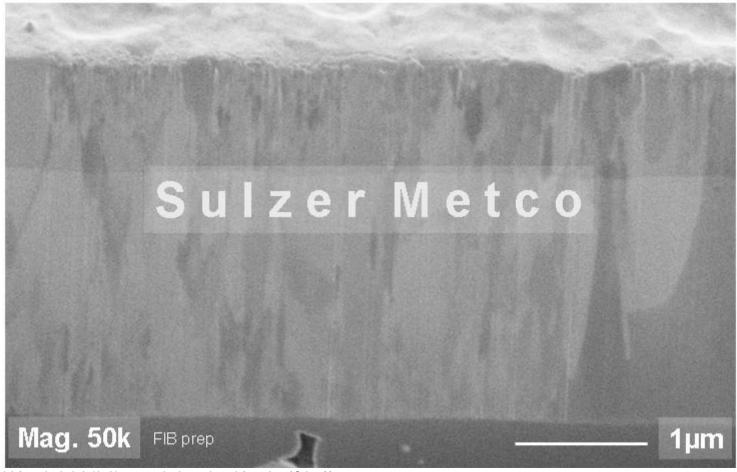
fracture cross section 横截面

Driving high technology 高科技的驱动者 MAC, 微合金涂层: M_{flex} (CrSiXN)

M_{flex} from the Sulzer Metaplas machining Series

M_{flex} 来着苏尔寿美科切削家族

fracture cross section 横截面


Driving high technology 高科技的驱动者 MAC, 微合金涂层: M_{power} (TiSiXN)

M_{power} from the Sulzer Metaplas machining Series

M_{power} 来着苏尔寿美科切削家族

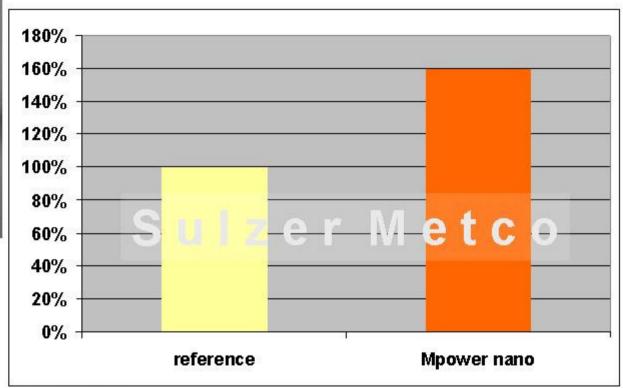
fracture cross section 断裂横截面

Driving high technology 高科技的驱动者 MAC, 微合金涂层: M_{power} (TiSiXN)

M_{power} from the Sulzer Metaplas machining Series M_{power} 来着苏尔寿美科切削家族

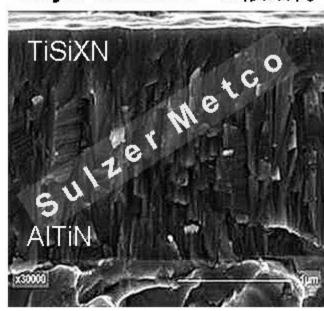
as nano-laminate ideal for Ti machining

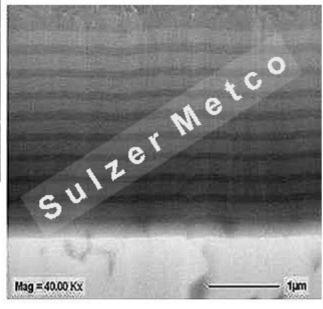
Driving high technology 高科技的驱动者 Machining of beta-Ti: nano laminated M_{power}



加工Beta-Ti: 纳米多层结构的 Mpower

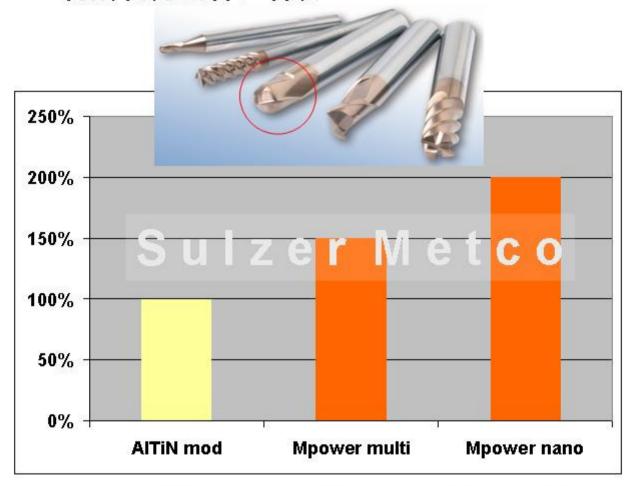
rough milling of 粗铣 β-Ti (Ti3Al8V6Cr4Zr4Mo) Ø 25mm endmill 端面铣刀, v_c = 60 m/min


nano laminated M_{power} 纳米多层结构的


Driving high technology 高科技的驱动者 Dedicated structure design 针对不同应用的结构设计: Mpower Metco

2 layer structure 双层结构

multi-layer architecture 多层结构


nano-laminated film 纳米多层结构

Driving high technology 高科技的驱动者 Hard machining 硬材料加工: M_{power}

Milling of hardened steel, material 1.2379 60-62 HRC 铣削硬化钢材,材料 1.2379 60-62 HRC

dry, $v_c = 115$ m/min, $f_z = 0.05$ mm, $a_p = 0.1$, $a_p = 0.2$

Driving high technology 高科技的驱动者 Technology module: Oxide / Oxinitride

技术模块:氧化/氧化氮化

Oxinitride / Oxide 氧化氮化/氧化

inert surface 惰性的表面

Driving high technology 高科技的驱动者 Technology module: Oxide / Oxinitride

技术模块:氧化/氧化氮化

Example for an oxidic top layer by Arc

例如多弧技术生成的氧化表层

glass like Cr₂O₃ morphology 类似玻璃的 Cr2O3 表层

dense CrN morphology 致密的 CrN 底层

other variants by Arc: e.g. AlTiCrNO 多弧技术生成的其它不同种类涂层: 如 AlTiCrNO

高科技的驱动者

SULZER

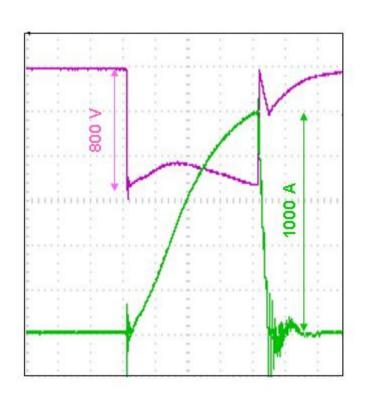
HIPAC: 苏尔寿美科在HCPMS技术上的创新

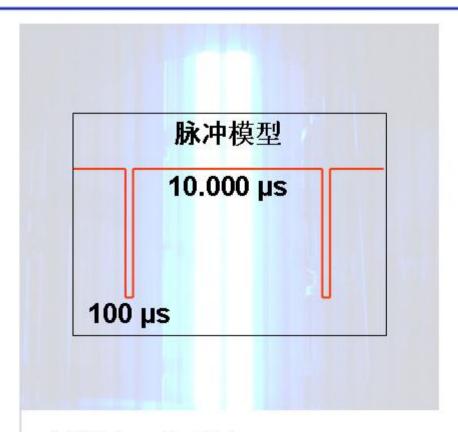
Sulzer Metco

HIPAC =高等离子化脉冲磁控溅射技术

HCPMS = 高电流脉冲磁控溅射技术

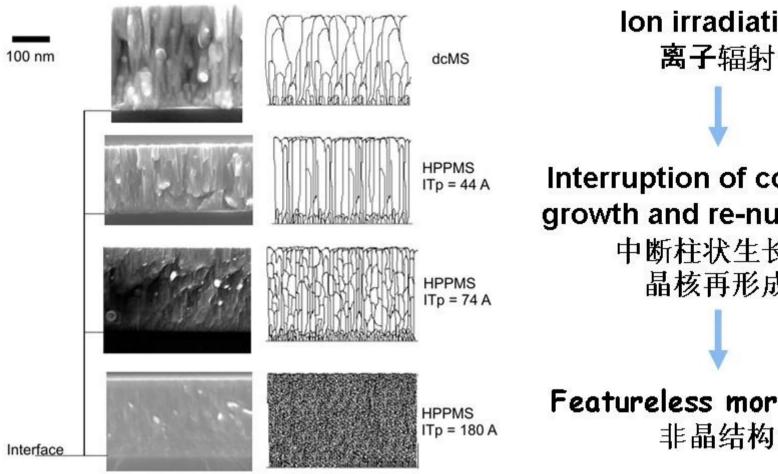
Patented AEGD = 等离子增强辉光放电多弧专利技术




HIPAC = AEGD + HCPMS

- ■提高的离子化率
- 高离子化程度的沉积材料 (+,++, 更高)
- 高流量的低能量离子
- 可控的涂层微观结构和相形成
- 低沉积温度的可能

HIPAC: 原理


- 低脉冲工作时间
- ·低频 (<1 kHz)
- · 高功率峰值(>0.5MW)
- •低平均功率(相对于传统溅射)

Driving High Technology 高科技的驱动者 Effect on the film microstructure 对涂层微观结构的影响

Sulzer Metco

Film morphology 涂层形态

Ion irradiation

Interruption of columnar growth and re-nucleation

> 中断柱状生长和 晶核再形成

Featureless morphology 非晶结构

[J. Alami, K. Sarakinos et al., J. Phys. D: Appl. Phys. 42 (2009) 015304]

高科技的驱动者

HIPAC技术生成的CrN涂层应用在造币模具上

涂层厚度:2um

粗糙度:

涂层前Ra: 7nm

涂层后Ra: 9nm

结合力(用AEGD技术

对基体进行过离子束清洗):

划痕失效测试

(持续加载): 110N

沉积温度在130摄氏度

高科技的驱动者

高性能涂层:未来是混合技术的天下

谁精通这两种技术谁就是未来趋势的掌控者

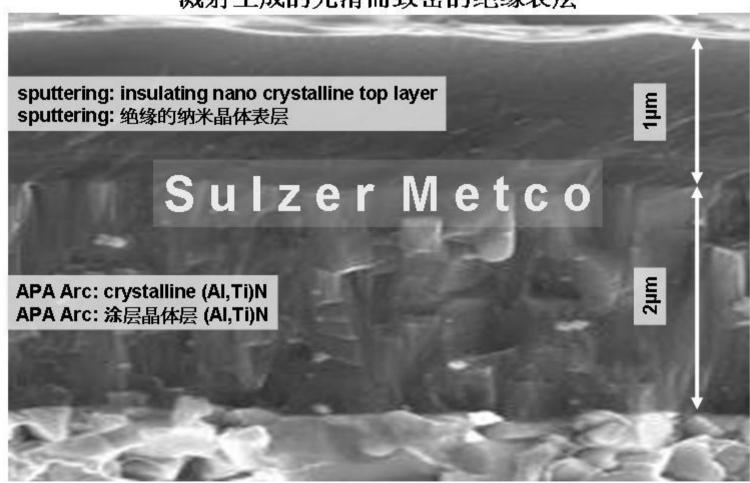
高科技驱动的趋势:

SULZER

应用APA Arc - HIPAC混合技术的微合金涂层

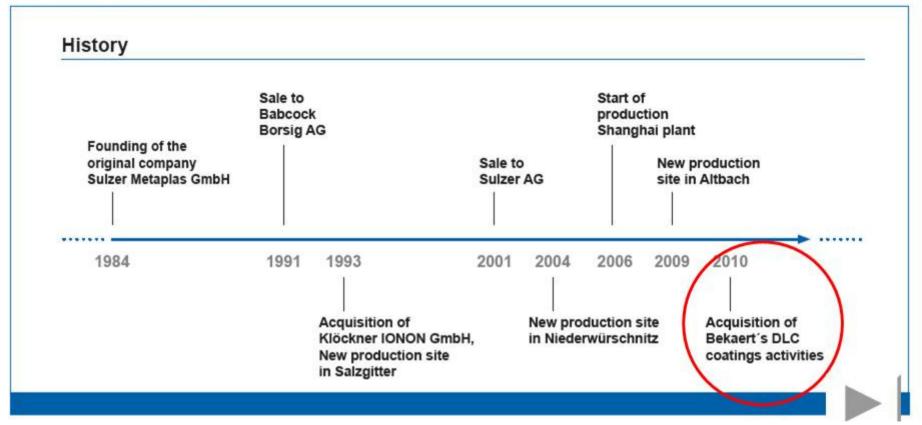
Sulzer Metco

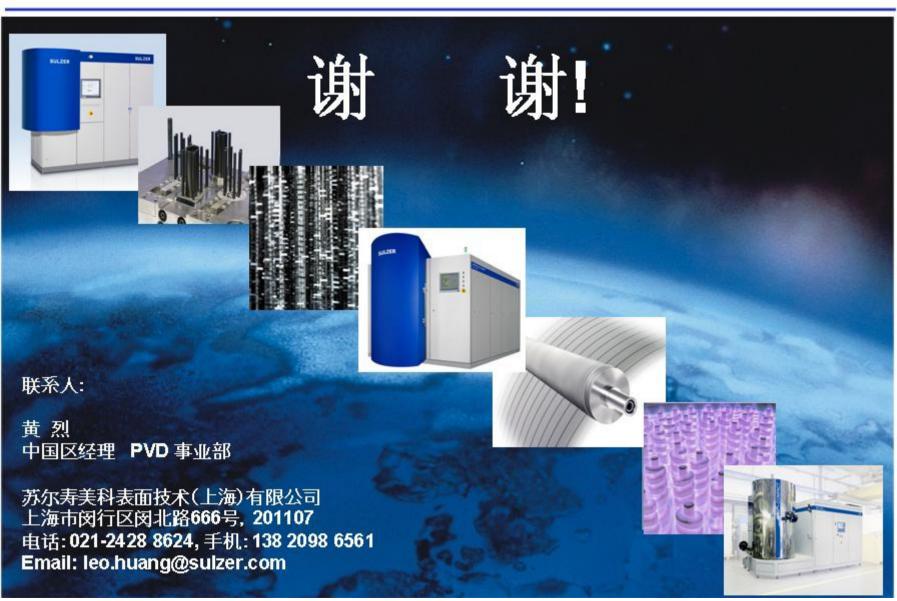
微合金涂层: AITISIXN



Driving High Technology 高科技的驱动 Hybrid process technique

Smooth and dense sputtered insulating top coat


溅射生成的光滑而致密的绝缘表层


Sulzer Metco

A STATE OF THE STA	■ Company	Technologies	Applications	Solutions
	Corporate Structure History Locations Industries	Overview Plasma Heat Treatment PVD Coating Combi Treatment DLC Coating	Plastics Machining Forming Semiconductor Racing Automotive Engineering Thin Film Equipment	Coating Services Thin Film Equipment Shop-in-Shop Expertise

Sulzer Metco

